Thursday, October 31, 2013

Potential Vaccine against early Childhood Pneumonia and Bronchiolitis

An experimental vaccine to protect against respiratory syncytial virus (RSV), a leading cause of illness and hospitalization among very young children, elicited high levels of RSV-specific antibodies when tested in animals, according to a report in the journal Science.
Early-stage human clinical trials of the candidate vaccine are planned. The scientist built on their previous findings about the structure of a critical viral protein to design the vaccine. The team was led by Peter D. Kwong, Ph.D., and Barney S. Graham, M.D., Ph.D.
The respiratory syncytial virus (RSV) is responsible for a common chidhood illness. There is no vaccine available to prevent RSV infection.
In the United States, RSV infection is the most common cause of bronchiolitis (inflammation of small airways in the lungs) and pneumonia in children less than one year old and the most common cause for hospitalization in children under five. Worldwide, it is estimated that RSV is responsible for nearly 7 percent of deaths in babies aged 1 month to 1 year; only malaria kills more children in this age group. Others at risk for severe disease following RSV infection include adults over age 65 and those with compromised immune systems.
“Many common diseases of childhood are now vaccine-preventable, but a vaccine against RSV infection has eluded us for decades,” said NIAID Director Anthony S. Fauci, M.D. “This work marks a major step forward. Not only does the experimental vaccine developed by our scientists elicit strong RSV-neutralizing activity in animals, but, more broadly, this technique of using structural information to inform vaccine design is being applied to other viral diseases, including HIV/AIDS.”
Viruses are made of proteins.For a vaccine to work there need to be a protein that is the same shape as the virus but will not cause illness. When The immune system comes in contact with the vaccine it learns to attack this protein. That way your immune system will attack the virus when it comes in concact with them.
“Here is a case in which information gained from structural biology has provided the insight needed to solve an immunological puzzle and apply the findings to address a real-world public health problem,” said Dr. Graham. He and the VRC scientists are continuing to refine the engineered F glycoproteins and hope to launch early-stage human clinical trials of a candidate RSV vaccine as soon as clinical grade material can be manufactured, a process that takes about 18 to 24 months.
“Previously, structure-based vaccine design held promise at a conceptual level,” said Dr. Kwong. “This advance delivers on that promise and sets the stage for similar applications of structure-guided design to effective vaccines against other pathogens.”
Dr. Fauci added, “This latest advance underscores the advantages of the VRC’s organizational design, where experts in RSV virology, vaccinology and clinical studies, such as Dr. Graham, are in daily contact with Dr. Kwong and others who are experts in structural biology. Such close collaboration across disciplines allows for rapid testing of new approaches to a given problem.”
Source NIH

No comments:

Post a Comment